β-decay of neutron-rich Z~60 nuclei and the origin of Rare-Earth Elements

J. Wu¹,², S. Nishimura¹, E. Ideguchi³, G. Lorusso⁴, G. Simpson⁴, Z.Y. Xu⁵, H. Baba¹, F. Browne¹,⁶, R. Daido⁷, P. Doornenbal¹¹, Y.F. Fang⁷, T. Isobe¹, Z. Li², Z. Patel¹,⁸, S. Rice¹,⁸, L. Sinclair¹,⁹, P.A. Söderström¹, T. Sumikama¹⁰, H. Watanabe¹¹, A. Yagi⁷, R. Yokoyama¹², N. Aoi³, F.L. Bello Garrote¹³, G. Benzoni¹⁴, G. Gey⁴,¹⁵, A. Gottardo¹⁶, K. Kobayashi¹⁷, I. Kojouharov¹⁸, N. Kurz¹⁸, H. Nishibata⁷, A. Odahara⁷, H. Sakurai¹, H. Schaffner¹⁸, M. Tanaka³, J. Taprogge¹⁹ and the EURICA collaboration

¹ RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
² School of Physics, Peking University, China
³ Research Center for Nuclear Physics, Osaka University, Japan
⁴ LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble Cedex, France
⁵ Department of Physics, University of Tokyo, Japan
⁶ School of Computing, Engineering and Mathematics, University of Brighton, United Kingdom
⁷ Department of Physics, Osaka University, Japan
⁸ Department of Physics, University of Surrey, United Kingdom
⁹ Department of Physics, University of York, Heslington, York, YO10 5DD, UK
¹⁰ Department of Physics, Tohoku University, Japan
¹¹ Department of Physics, Beihang University, China
¹² Center for Nuclear Study, University of Tokyo, Japan
¹³ University of Oslo, Norway
¹⁴ INFN, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
¹⁵ ILL, 38042 Grenoble Cedex, France
¹⁶ INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
¹⁷ Rikkyo University, Tokyo, Japan
¹⁸ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
¹⁹ Instituto de Estructura dela Materia, CSIC, E-28006 Madrid, Spain

A large fraction of the rare-earth elements observed in the solar system are produced in the astrophysical rapid neutron capture process (r-process). In the solar r-process abundance distribution, the peak at around A=160, is a prominent feature known as rare-earth elements (REE) peak. In contrast to the other two prominent peaks at around A=130 and A=195, which are associated with neutron shell closure[1], it has been argued that the formation of the REE peak may be related to the nuclear deformation[2].

To address this problem, a β-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) of RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z~60 that are progenitors of the rare-earth elements with mass number A~160. This experiment was carried out using in-flight fission of 345MeV/nucleon ²³⁸U primary beam. A stack of five highly-segmented double-side silicon strip detectors was employed to study implanted isotopes and their subsequent β-decays, in conjunction with high-purity germanium cluster detectors (EURICA).

In this experiment, about 27 new half-lives were measured with high statistics, including the half-lives of the rare-earth elements Pm, Nd, Pr, Ce, La. This contribution will present preliminary experimental results and discuss the formation of the REE peak.