Beta-delayed gamma decay measurements to probe thermonuclear astrophysical explosions

C. Wrede1,2 for the NSCL E10034, E12028, and E14066 collaborations

1Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

We describe a program of beta delayed gamma decay measurements to reduce and quantify several of the most important nuclear physics uncertainties associated with nucleosynthesis and energy generation in classical novae and type I x-ray bursts. These measurements employ beams of rare isotopes at the proton drip line produced by projectile fragmentation, and large arrays of high-purity germanium detectors. Using 26P decay, we have observed the first evidence for the exit channel of the key 25Al(p,γ)26Si resonance in novae [1]. This experiment has enabled an estimate of the nova contribution to the Milky Way’s 26Al abundance that is effectively free of nuclear-physics uncertainties. We recently collected a high-statistics data set on the beta-delayed gamma decay of 31Cl, which selectively populates $L=0$ resonances in the 30P(γ)31S reaction, in order to identify these resonances with shell-model ones and calculate their strengths. This reaction is a bottleneck whose uncertain rate strongly influences nucleosynthesis in novae on white dwarfs near the Chandrasekhar mass and the identification of candidate presolar nova grains. In the near future, we plan to experimentally test the feasibility of a novel beta-decay method to determine the unknown 15O(α,γ)19Ne reaction rate, which is believed to initiate breakout from the hot CNO cycles in type I x-ray bursts.