Direct detection of LIVE 60Fe and 244Pu on earth as a monitor for recent heavy-element nucleosynthesis

Anton Wallner1, Max Bichler2, Thomas Faestermann3, Jenny Feige4, L. Keith Fifield1, Robin Golser4, Gunther Korschinek3, Walter Kutschera4, Silke Merchel5, Michael Paul6, Georg Rugel5, Dorothea Schumann7, Johannes Sterba2, Steve Tims1 and Stephan R.Winkler4

1 Department of Nuclear Physics, Australian National University, Canberra, Australia
2 Atominstitut, Vienna University of Technology, Vienna, Austria
3 Technische Universität München, D-85747 Garching, Germany
4 VERA Laboratory, Faculty of Physics, University of Vienna, Austria
5 DREAMS, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
6 Racah Institute of Physics, Hebrew University, Jerusalem, Israel
7 Paul Scherrer Institute (PSI), Villigen, Switzerland

Observation and detection of freshly produced radionuclides provides a direct clue for understanding stellar nucleosynthesis. The Solar System travels through the interstellar medium collecting dust particles and direct ejecta from stellar events. Previous measurements in terrestrial archives for 60Fe ($t_{1/2}=2.6$ Ma) at TU Munich [1] and for 244Pu ($t_{1/2}=81$ Ma) at TUM [2], Hebrew Univ. [3] and VERA, Vienna [4] applied accelerator mass spectrometry (AMS), the most sensitive technique for counting the expected small traces.

Search of live interstellar 244Pu can place strong constraints on recent r-process frequency and production yield. We will present new data suggesting much lower abundances than expected from continuous production in Supernovae (SNe).

Recently, we have started a program at the ANU to follow-up a discovery of a 60Fe excess pointing to a close-by SN [1], leading to an exceptional sensitivity of 60Fe/Fe ~10^{-16}. We searched for a SN-signal in 3 deep-sea sediment cores. We will present first data for 60Fe allowing high time resolution and will relate it to potential recent SNe.

In addition, we have re-measured with an independent method the 60Fe half-life via AMS that allows us to address a previous large discrepancy [5,6].