Direct detection of LIVE ⁶⁰Fe and ²⁴⁴Pu on earth as a monitor for recent heavy-element nucleosynthesis

<u>Anton Wallner</u>¹, Max Bichler², Thomas Faestermann³, Jenny Feige⁴, L. Keith Fifield¹, Robin Golser⁴, Gunther Korschinek³, Walter Kutschera⁴, Silke Merchel⁵, Michael Paul⁶, Georg Rugel⁵, Dorothea Schumann⁷, Johannes Sterba², Steve Tims¹ and Stephan R.Winkler⁴

- ¹ Department of Nuclear Physics, Australian National University, Canberra, Australia
- ² Atominstitut, Vienna University of Technology, Vienna, Austria
- ³ Technische Universität München, D-85747 Garching, Germany
- ⁴ VERA Laboratory, Faculty of Physics, University of Vienna, Austria
- ⁵ DREAMS, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
- ⁶ Racah Institute of Physics, Hebrew University, Jerusalem, Israel
- ⁷ Paul Scherrer Institute (PSI), Villigen, Switzerland

Observation and detection of freshly produced radionuclides provides a direct clue for understanding stellar nucleosynthesis. The Solar System travels through the interstellar medium collecting dust particles and direct ejecta from stellar events. Previous measurements in terrestrial archives for ⁶⁰Fe ($t_{1/2}$ =2.6 Ma) at TU Munich [1] and for ²⁴⁴Pu ($t_{1/2}$ =81 Ma) at TUM [2], Hebrew Univ. [3] and VERA, Vienna [4] applied accelerator mass spectrometry (AMS), the most sensitive technique for counting the expected small traces.

Search of live interstellar ²⁴⁴Pu can place strong constraints on recent *r*-process frequency and production yield. We will present new data suggesting much lower abundances than expected from continuous production in Supernovae (SNe).

Recently, we have started a program at the ANU to follow-up a discovery of a ⁶⁰Fe excess pointing to a close-by SN [1], leading to an exceptional sensitivity of ⁶⁰Fe/Fe ~10⁻¹⁶. We searched for a SN-signal in 3 deep-sea sediment cores. We will present first data for ⁶⁰Fe allowing high time resolution and will relate it to potential recent SNe.

In addition, we have re-measured with an independent method the ⁶⁰Fe half-life via AMS that allows us to address a previous large discrepancy [5,6].

- [1] K. Knie et al., PRL93 (2004), C. Fitoussi et al., PRL101 (2008).
- [2] C. Wallner et al. New Astr.Rev.48 (2004)
- [3] M. Paul et al, ApJL558 (2001)
- [4] A. Wallner et al., submitted
- [5] G. Rugel et al., PRL103 (2009)
- [6] W. Kutschera et al., NIM B5 (1984)