THE IMPACT OF NUCLEAR MASSES NEAR CLOSED SHELLS ON r-PROCESS ABUNDANCES

M. R. Mumpower1, D.-L. Fang2, R. Surman3, M. Beard1, B. A. Brown2, A. Aprahamian1

1 Department of Physics, University of Notre Dame, Notre Dame, USA
2 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, USA
3 Department of Physics, Union College, Schenectady, USA

Nuclear masses are one of the key ingredients of nuclear physics that go into astrophysical simulations of the r process. Nuclear masses effect r-process abundances by entering into calculations of Q-values, neutron capture rates, photo-dissociation rates, beta-decay rates and the probability to emit neutrons. Most of the thousands of short-lived neutron-rich nuclei which are believed to participate in the r process lack any experimental verification, thus the identification of the most influential nuclei is of paramount importance. We have conducted mass sensitivity studies near closed shells in the context of a main r-process. Our studies take into account how an uncertainty in a single nuclear mass propagates to influence the relevant quantities of neighboring nuclei and finally to r-process abundances. Using various nuclear models and astrophysical conditions we identify key nuclei in these studies whose mass has a substantial impact on final r-process abundances and discuss implications for measurements at radioactive beam facilities.

This work was supported by the Joint Institute for Nuclear Astrophysics grant number PHY0822648.