MEASUREMENT OF THE p-PROCESS BRANCHING POINT REACTION 76Se(α,γ)80Kr IN INVERSE KINEMATICS WITH DRAGON

Jennifer Fallis1, Charlie Akers1,2, Alison Laird2, Artemis Spyrou3,4, Gregory Christian1, Devin Connolly5, Barry Davids1,6, Iris Dillman1, Ulrike Hager5, Patrick O’Malley5, Jos Riley2, Alex Rojas1, Chris Ruiz1, Anna Simon7, Stephen Quinn3,4

1 TRIUMF, Vancouver, BC, Canada
2 Department of Physics, University of York, York, United Kingdom
3 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
4 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, United States
5 Department of Physics, Colorado School of Mines, Golden, CO, United States
6 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
7 Department of Physics, University of Richmond, Richmond, VA, United States

The reaction 76Se(α,γ)80Kr has been identified as one of the highest priority measurements for the p-process [1]. The nuclide 80Kr is a branching point of this process and so the relative rates of the 80Kr photo-disintegration reactions will directly affect abundance of p-nuclide 78Kr. Currently the 80Kr(γ,α)76Se reaction rate is the most uncertain. For this reason 76Se(α,γ)80Kr was chosen as the flagship measurement of the DRAGON high mass program, the goal of which has been to expand the capabilities of the DRAGON recoil separator to study beams of mass A > 40. The recent measurement of the 76Se(α,γ)80Kr reaction constitutes the first scientific results of this ongoing program. Here we report on the first two measurements of 76Se(α,γ)80Kr at energies within the 2.0 T_\odot Gamow window, provide description of the required upgrades to the DRAGON separator, and present results from the high mass commissioning experiments. Plans for future measurements of 76Se(α,γ)80Kr and other p-process reactions will also be discussed.