Fast neutron detection by resistive plate chambers

- Z. Elekes^{1,2}, M. Röder^{2,3}, T. Aumann^{4,5}, D. Bemmerer², K. Boretzky⁴, C. Caesar^{4,5},
- T. E.Cowan^{2,3}, J. Hehner⁴, M. Heil⁴, M. Kempe^{2,3}, V. Maroussov^{4,6}, O. Nusair^{4,7},
- A. V. Prokofiev⁸, M. Sobiella², R. Reifarth⁹, D. Stach², A. Wagner², D. Yakorev^{2,3},
- A. Zilges⁶, K. Zuber³ for the R3B collaboration
- ¹ MTA Atomki, Debrecen, Hungary
- ² HZDR, Dresden, Germany
- ³ TU Dresden, Dresden, Germany
- ⁴ GSI, Darmstadt, Germany
- ⁵ TU Darmstadt, Darmstadt, Germany
- ⁶ Universität zu Köln, Köln, Germany
- ⁷ Al-Balqa Applied University, Salt, Jordan
- ⁸ The Svedberg Laboratory, Uppsala, Sweden
- ⁹ Goethe Universität, Frankfurt am Main, Germany

Experiments with radioactive ion beams often require the detection of fast neutrons with large angular acceptance, high efficiency and a capability of multi-neutron event identification. We have developed a detector of 2 m length based on resistive plate chambers. Extensive tests have been carried out by electron and neutron beams compared to Monte Carlo simulations, which will be discussed in details. Furthermore, a possible modular setup for invariant mass spectroscopy of multi neutron (with energies of 0.2-1 GeV) emission will be presented.