²⁶Al/³⁰P(d,n) REACTIONS FOR KEY ASTROPHYSICAL RESONANCES IN EXPLOSIVE HYDROGEN BURNING A. Kankainen¹, P.J. Woods¹, C. Langer², H. Schatz², D. Bazin², D. Doherty¹, A. Estrade¹, A. Gade², A. Kontos², G. Lotay¹, Z. Meisel², F. Montes², S. Noji², G. Perdikakis³, J. Pereira², F. Recchia², T. Redpath³, M. Scott², D. Seweryniak⁴, D. Weisshaar², K. Wimmer³ and R. Zegers² - ¹ University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom - ² National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA - ³ Central Michigan University, Mount Pleasent, Michigan 48859, USA - ⁴ Argonne National Laboratory, Argonne, Illinois 60439, USA ²⁶Al(d,n)²⁷Si and ³⁰P(d,n)³¹S transfer reactions have been studied in inverse kinematics at the National Superconducting Cyclotron Laboratory to obtain information on the strength of key astrophysical resonances in ²⁷Si and ³¹S. These are relevant for abundance calculations of the cosmic gamma-ray emitter ²⁶Al, and for the abundances of heavy elements (e.g. silicon), highly dependent on the ³⁰P(p,γ)³¹S reaction, observed in novae ejecta. A primary beam of ³⁶Ar (150 MeV/A) impinging on a Be target produced around 30-MeV/u beams of ²⁶Al and ³⁰P, which were separated by the A1900 fragment separator [1]. The radioactive ²⁶Al and ³⁰P beams bombarded a 10 mg/cm²-thick CD₂ target surrounded by the Gamma-Ray Energy-Tracking Inbeam Nuclear Array GRETINA [2]. The ²⁷Si and ³¹S ions were analyzed by the S800 spectrograph [3] and identified by energy-loss and time-of-flight measurements. The γ-rays from the decays of excited states in ²⁷Si and ³¹S were detected in coincidence with the recoiling ²⁷Si and ³¹S ions using GRETINA. By measuring the number of coincident events, and correcting for the angular distributions of the gamma rays, this provides an angle integrated measurement of the (d,n) cross-sections, and a measure of the proton partial widths for the key astrophysical resonances in ²⁷Si and ³¹S. - [1] D.J. Morrissey et al., Nucl. Instrum. Meth. Phys. Res. B 204, 90 (2003). - [2] S. Paschalis et al., Nucl. Instrum. Meth. Phys. Res. A 709, 44 (2013). - [3] D.Bazin et al., Nucl. Instrum. Meth. Phys. Res. B 204, 629 (2003).