THE ¹³C-POCKETS IN AGB STARS AND THEIR FINGERPRINTS IN MAINSTREAM SIC GRAINS

<u>Nan Liu</u>¹, Andrew M. Davis^{1,2}, Roberto Gallino³, Michael R. Savina⁴, Sara Bisterzo³, Michael J. Pellin^{1,2,3}, Nicolas Dauphas^{1,2}

- ¹ Dept. of Geophys. Sci., ²Enrico Fermi Inst., Univ. of Chicago, Chicago, USA
- ³ Dip. di Fisica, Università di Torino, Torino, Italy
- ⁴ Materials Science Div., Argonne National Laboratory, Argonne, USA

The main *s*-process occurs in AGB stars, with ¹³C(α ,n)¹⁶O being the major neutron source [1], but it is unclear what process(es) are responsible for mixing protons from the bottom of the convective envelope to the He-intershell to form the so-called ¹³C pocket. AGB model predictions suffer from uncertainties in the distribution of ¹³C within and the mass of the ¹³C-pocket [2]. We investigated ¹³C-pocket internal structures with Torino postprocess AGB nucleosynthesis models in an attempt to match isotopic compositions of mainstream presolar SiC grains. We found that predictions of ⁸⁸Sr/⁸⁶Sr, ⁹²Zr/⁹⁴Zr, and ¹³⁸Ba/¹³⁶Ba are extremely sensitive to the ¹³C profile and ¹³C-pocket mass [3,4]. Better agreement with mainstream SiC can be obtained by adopting a ¹³C-pocket with a flat ¹³C profile, compared to the decreasing-with-depth profile previously used. However, we could not exclude the possibility of diverse ¹³C-pockets in parent AGB stars based on only ¹³⁸Ba/¹³⁶Ba or ⁹²Zr/⁹⁴Zr data in mainstream SiC. We therefore measured Sr and Ba isotopes in mainstream SiC grains simultaneously. Using a four-isotope plot of ⁸⁸Sr/⁸⁶Sr versus ¹³⁸Ba/¹³⁶Ba, we showed that parent AGB stars of mainstream SiCs tend to have lower-mass ¹³C-pockets with both flat and decreasing-with-depth ¹³C profiles [5].

[1] Gallino et al., ApJ 497, 388 (1998).
[2] Bisterzo et al., ApJ, accepted (2014).
[3] Liu et al., ApJ, accepted (2014).
[4] Liu et al., ApJ, submitted (2014).
[5] Liu et al., LPS 45, #2049 (2014).